

NREL's Plans & Strategies for Building Green Data Centers

2009 DOE Information Management Conference

Chuck Powers

March 2, 2009

What Makes NREL Unique?

Only national laboratory dedicated to renewable energy and energy efficiency R&D

Collaboration with industry and university partners is a hallmark

Ability to link scientific discovery and product development to accelerate commercialization

Technology Development Programs

Efficient Energy Use

- Vehicle Technologies
- Building Technologies
- Industrial Technologies

Renewable Resources

- Wind and water
- Solar
- Biomass
- Geothermal

Energy Delivery and Storage

- Electricity
 Transmission and
 Distribution
- Alternative Fuels
- Hydrogen Delivery and Storage

Foundational Science and Advanced Analytics

Research Support Facility (RSF)

- •LEED® Platinum "Plus"
- •220,000 sq. ft.
- •Supports ~750 administrative staff
- •Complete July 2010
- •Contain NREL Data Center
- Model for new buildings

Research Support Facility (RSF)

Use of renewable / recycled energy

- •750kW PV array
- •Renewable Fuels Heating Plant
- Waste heat from Data Center

Research Support Facility (RSF)

Energy efficiency

- Average DOE lab: 80.6kW / sq. ft./ yr.
- National average: 22kW
- Denver building code: 14.6kW
- Energy goal for RSF: 7.3kW / sq. ft./ yr.
- 1/10th of the DOE lab average!

Why is Data Center Efficiency Important?

- Data centers are facing a power and cooling crisis
- •Data centers use 2-3% of all power produced in the U.S.
- Data center power demands are increasing
- Energy costs expected to rise
- Energy costs expected to exceed equipment costs

Data Center Power Usage

The data center energy challenge affects both physical data center and IT infrastructure

Source: Gartner

Power Usage Effectiveness (PUE)

"Free Cooling"

Cooling System

- Custom hybrid cooling system using air-side economizer, water-side economizer and chilled water
- Layout data center using hot and cold aisles
- Contain heat produced by equipment
- Waste heat will be use to supplement building heat

Uninterruptible Power Supply (UPS)

- 96% energy efficient
- Designed for scalability
- Provides 15 minutes of uptime
- Operate in efficiency "Sweet Spot"

Other Power Stuff

Power Distribution Unit

- 98.6% efficient

Lighting

- Energy efficient lights
- Motion sensors
- Day lighting

Power Usage Effectiveness (PUE)

Servers

Moving towards high-density blade servers

- Highly efficient power supplies
- Variable speed fans
- Wake-on-LAN

Server consolidation/virtualization

- Ratio: 4-8 to 1
- VMware for Windows & LINUX
- Solaris Containers on Sun

Increase server utilization

Nominal increase in energy consumption for a higher server utilization

Virtualization Effect on Power Footprint

4:1 Virtualization

Dynamic Workload Management

- Server resources go from "always on" to "always available"
- As resources are needed, they are brought online
- As resources are no longer required, they are powered down or put in standby
- Saves energy

Network/Telecommunications

- Network must be "always on"
- Right-size
 - 100Mbps to desktop
 - Reevaluate VoIP phone selection
 - Carefully manage # of ports
- •Consider ways to leverage network to improve environmental impact
- Use virtual connections for blade servers

Storage

- Storage consolidation
- Thin provision
- Use data de-duplication and file compression
- Use appropriate RAID configuration
- Use largest disks possible
- Use tiered storage strategy

Current Data Center

- 30 years old
- 2,500 sq. ft.
- Supports corporate data center functions and HPC
- Challenged to support growing demands for space, power and cooling
- Inefficient power and cooling systems
- No backup generator power
- Performed energy audit to identify investments required to extend longevity
- Estimated PUE of 2.5

Expected Reduction in Data Center Power

- Target PUE of 1.1
- •65% overall reduction in data center power
- Equipment 30% more efficient
- Equipment load increased from lab growth and new capabilities

What does this mean?

- Better understand system requirements for projects
- Right-size systems
- Architect for scalability
- Make better use of existing system resources
- Turn off resources not in use
- Enhance capacity management processes
- Consider power costs in TCO for IT investments

Energy System Integration Facility (ESIF)

ESIF - Focus on renewable energy systems integration

- 130,000 g.s.f. building, ~200 staff
- Mixture of office and lab space

High Performance Computing

- 15,000 g.s.f. Data Center
- 2011: 200+ Tflops 1+ PByte storage
- 2014: 1+ Pflop
- Planning horizon 2010 to 2025.

ESIF: Data Center

Dual Mission:

Petascale system to meet NREL HPC computing needs, and Showcase for data center energy efficiency.

Holistic view: integrate HPC equipment and a Data Center into an energy efficient building and campus.

Integrate state-of-the-art technologies and design practices.

"Chips to Bricks" approach.
Unique opportunity with new construction.

Optimizing ESIF's Data Center Performance

- Seasonal PUE targets with fall, winter, spring PUE < 1!
- NO mechanical cooling or perimeter CRAC units
- Leverage favorable climate, evaporative cooling only
- Rely heavily on liquid cooling
- UPS exclusively for critical components
- Numerous waste heat utilization opportunities (pretreat lab air, radiant heating in office space, snow melt, ...)
- Monitor PUE (power usage effectiveness)
- PUE = Total Power / IT Equipment
- Economizer hours, temperature profiles, allowable conditions
- Dashboards to report instantaneous, seasonal and cumulative PUE values

Best Practices for Green Data Centers

- Use energy-efficient equipment
- Upgrade legacy equipment
- Consolidate & virtualize servers
- Right-size IT infrastructure
- Good relationship between IT and Facilities
- Track & manage data center energy consumption
- Perform long-term capacity planning for power
- Make energy consumption a part of TCO analysis
- Implement targeted/adaptive cooling solutions
- Improve airflow management

10 Things You Can Do Now to Make Your Data Center More Efficient

- Decommission obsolete equipment
- Perform regular maintenance on Computer Room Air Handlers
- Remove excess sub floor cabling and wiring
- Replace long power cords with shorter lengths to improve air flow
- Get rid of "rack spaghetti", use wire management and ties to secure wiring
- Turn off the lights install motion sensor switches if possible
- Cover all open rack spaces with blanking panels
- Use "Kool Loc" to cover floor openings and brush panels front mounted cable connections
- Configure your racks in a hot aisle/cold aisle
- Contain either hot aisle or cold aisle

The Green Workplace

Source: Corné de Graaf

Campus of the Future Prototype

NREL leased a LEED® certified building to house 128 IT staff

- The office environment
 - Low cube heights for light and air circulation
 - "huddle rooms" for privacy
- New technologies for collaboration
 - Idea paint whiteboarding on the walls
 - Electronic white boards
 - Unified Communications
 - Headset
 - Computer, phone, mobile device
- Energy conservation
 - Replace printers/copiers/fax with all-in-one
 - Belt-high outlets for visual awareness
 - Personal refrigerators, microwaves and coffee pots not allowed
- Green recycling practices
 - Hardware
 - Recycle at 80 simple trash

Culture Change

- Started with 80% resistance
 - Lack of privacy
 - Managers/Director do not have hard-walled offices
 - Loss of convenience
 - Separation from campus
- Currently less than 10% resistance
 - Several of most concerned are raving
 - Light lifts mood
 - Everyone has a window
 - The Walton's

Experiences will influence NREL's Campus of the Future

Desktop Environment

- Manage workstation lifecycle for environmental impact
- Use energy-efficient LCD monitors
- Use laptops with docking stations for road warriors & day extenders
- Evaluating the use of thinclient technology at the desktop

Workstation Type	Power	Reduction
Standard PC	400w	0%
Energy Star PC	300w	25%
Laptop	60w	85%
Thin Client	35w	91%

Technologies in Evaluation

- Application virtualization
- Thin clients
- Hot Desking
- Workstation Energy Measurement
- Virtual proximity
 - Microsoft Unified Communications
 - Round Table
 - Telepresence
- State-of-the-art conference rooms
 - Electronic whiteboards
 - Large monitors
 - Electronic room control

RSF Prototype

Henri Hubenka – Manager, Client Services

henri.hubenka@nrel.gov (303) 275-4155

NREL Data Center

Contacts:

- Chuck Powers, Manager Information Technology Infrastructure and Operations chuck.powers@nrel.gov (303) 275-4182
- Kevin Donovan, Data Center Manager kevin.donovan@nrel.gov
 (303) 275-4169

